Controlling pulmonary vascular resistance

Vicki L. Mahan

Buffalo, USA

Abstract: The dynamic nature of pulmonary vascular resistance (PVR) in the neonate makes it difficult to maintain a Qp/Qs approximating 1. The reactive pulmonary vasculature is unpredictable and may result in poor systemic perfusion with pulmonary edema or inadequate oxygenation and elimination of carbon dioxide. The increase of pulmonary blood flow is at the expense of perfusion of the body and perfusion of the body at the expense of oxygenation and removal of carbon dioxide. The mortality is high if PVR is not managed properly and, therefore, an understanding of the physiology and treatment options is important to lowering the morbidity and mortality of unequal Qp/Qs. This article reviews the normal changes in PVR at birth, discusses various dynamic parameters of PVR, outlines accepted treatment options to maintain a Qp/Qs close to 1 in patients with reactive pulmonary vasculature, and discusses a new therapy for pulmonary hypertension that is being evaluated in the basic science laboratory.

Key words: pulmonary vascular resistance; nitric oxide; prostacyclin; milrinone; prostaglandin E1; eicosanoids; PVR

Normal fetal circulation

Fetal pulmonary circulation is characterized by high arterial pressure and high vascular resistance that cause blood ejection by the right ventricle to bypass the lungs and ensure adequate blood flow to the fetal body. Blood returning from the placenta via the umbilical vein mixes with that in the inferior vena cava and traverses the foramen ovale to the left atrium and, a smaller portion, through the tricuspid valve to the right ventricle. Blood flow from the superior vena cava enters the right ventricle. Blood in the right ventricle is ejected into the main pulmonary trunk and then more than 90% passes to the descending aorta through the ductus arteriosus while the rest is ejected into the pulmonary system. Blood in the left ventricle is ejected into the ascending aorta and 90% supplies the upper body/head. The other 10% passes to the descending aorta to supply the lower body. The fetal cardiac circuits act in parallel rather than in series as in the newborn (Fig.1).

Blood pressures in the fetus are shown in Fig. 2. The pressures of the right ventricle, left ventricle, main pulmonary trunk, ascending aorta, and descending aorta are nearly equal. Pulmonary blood flow is as low as 100 ml/100 g lung weight. Fetal gas exchange occurs in the placenta, and pulmonary blood flow mainly meets the metabolic requirements of the lungs. Pulmonary vascular resistance (PVR) early in gestation is higher than in infants and adults because few arteries are present. In the fetal lamb model, the number of small blood vessels in the lungs increases forty-fold between 85 and 145 days of gestation. Blood flow per unit of fetal lung does not change. The decrease of PVR during the last half of gestation is associated with growth of new arteries and an increase of cross-sectional area of the pulmonary vasculature. The baseline PVR in the fetus, however, is still much higher than after birth. The high PVR and low pulmonary blood flow in the fetus are caused primarily by vasoconstriction.

Vasoconstrictors of the pulmonary circulation of the fetus and newborn include arachidonic acid, prostaglandin F2α, thromboxane A2, leukotriene D4, and low oxygen tension. Decreasing oxygen tension in fetuses (103- to 104-day gestation) does not increase PVR, but PVR doubles if oxygen tension is low at 132- to 138-day gestation. Increasing oxygen tension before 100 days gestation does not change PVR, but decreases PVR markedly and increases blood flow to normal newborn levels at 135 days of gestation. These findings suggest that the reactivity of the pulmonary vasculature changes during development.
Changes at birth

At birth, the decrease of PVR is initiated by ventilation of the lungs with a gas, lowering of carbon dioxide tension, and raising oxygen tension in the lungs. Increasing oxygen levels alone decreases PVR and increases blood flow in the fetal lungs. Inflation of the lungs with a gas may decrease PVR by mechanical effects. Oxygen may dilate by direct effects on the vascular smooth muscle. These stimuli may also dilate by releasing endogenous mediators. At birth, small pulmonary vessels are highly muscular, pulmonary vascular resistance is high, and vascular reactivity is great. Normal pulmonary vessels become thin-walled and vascular resistance falls. Regulators of PVR include physical factors, vasoactive factors, and vascular remodeling.

Regulators of pulmonary vascular resistance

Physical factors affecting PVR are expressed by two equations; the hydraulic equivalent of Ohm's law and the Poiseuille-hagen relation. These are shown below:

Hydraulic equivalent of Ohm's law

\[R = (P_{PA} - P_{Pulm}) / Q \]

- \(R \): pulmonary vascular resistance; \(P \): pressure (pulmonary artery and pulmonary veins); \(Q \): pulmonary blood flow.

Poiseuille-hagen relation

\[R = (P_{PA} - P_{Pulm}) / Q = (8 / \pi) \left(\frac{1}{r^4} \right) \eta \]

- \(R \): pulmonary vascular resistance; \(P \): pressure (pulmonary artery and pulmonary veins); \(Q \): pulmonary blood flow; \(l \): length of tubular system; \(r \): overall internal radius of the tube; \(\eta \): coefficient of viscosity.

PVR increases as functional residual capacity increases to total lung capacity. Inflation of the lungs, therefore, is a determinant of PVR.

Oxygen, carbon dioxide, and pH also influence PVR. Reduction of \(PO_2 \) to less than approximately 30 mm Hg in newborn animals increases PVR. Low \(PO_2 \) in the fetus accounts for some pulmonary vasoconstriction and increase of PVR. Effects of the change in oxygen tension is mainly due to local factors (direct or mediated by secondary release and activity of vasoactive substance). The response of PVR to changing oxygen tension is affected by pH (acidemia accentuates the vasoconstriction associated with hypoxemia, but not by carbon dioxide).

Eicosanoids is a collective name for molecules derived from 20-carbon fatty acids and include prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipoxins, and peroxyl- or hydroxyl-fatty acid derivatives. Arachidonic acid is derived from linoleic acid (9,12-octadecadienoic acid) and is metabolized through 3 major pathways (Fig. 3). Exogenous PGE\(_2\) and PGA\(_2\) (prostacyclin) are vasodilators in the perinatal period. Mechanical stimulation of the lung (stretch) induces prostacyclin production. Ventilation of fetal lungs, without changing oxygen pressure, increases the venous blood concentration of prostacyclin, indicating production by the lungs, and the decrease of PVR with ventilation is attenuated by cyclooxygenase inhibition with indomethacin. Pulmonary vascular endothelium in culture also produces prostacyclin and is stimulated by histamine, angiotensin II, bradykinin, catecholamines, thyroid hormone, estradiol, platelet-activating factor, leukotrienes, ATP, and shear stress.

Vasodilation by prostacyclin is mediated by cyclic adenosine monophosphate. Prostacyclin and its metabolites are fetal pulmonary vasodilators more potent than PGE\(_2\). Meflofenamate (another prostaglandin synthesis inhibitor) blocks almost all of the response to rhythmic distension of the lungs with a gas that does not change oxygen and carbon dioxide tension. The role of endoge-
Controlling pulmonary vascular resistance

Nons prostacyclin at birth is questioned; production declines within hours after birth, and indomethacin only moderately disrupts the decrease of PVR, which occurs at birth and does not disrupt the transition to gas exchange by the lungs. However, inhaled prostacyclin has the same effect and may be useful in treating high PVR.

Purines, adenosine triphosphate and adenosine are also potent vasodilators in the fetal lamb. Specific membrane receptors for these purines are present on endothelial cells and smooth muscle cells. Adenosine receptors (P1) are divided into two types; A1 receptors, which are located predominantly in the heart where they mediate negative chronotropic and inotropic effects and A2 receptors, which are located on endothelial cells and mediate vasodilation. ATP receptors (P2) are, likewise, divided into two types; P2X receptors are found on smooth muscle cells and mediate vasoconstriction and P2Y receptors are found on endothelial cells and mediate vascular relaxation. Vasodilation caused by adenosine and ATP may occur indirectly through effects on vascular endothelium or through direct effects on smooth muscle cells. ATP-induced vascular relaxation via P2Y receptors is associated with formation of endothelium-derived relaxing factor (nitric oxide) resulting in an increased concentration of cGMP in smooth muscle cells. Adenosine stimulates P1-A2 receptors on pulmonary arteries and veins and elicits vaso-dilation via the endothelial synthesis of nitric oxide. ATP also induces the release of prostacyclin via the P2Y receptor. This may contribute to vasodilation. Adenosine and ATP play a significant role in the mediation of oxygen-induced pulmonary vasodilation in fetal lambs (Fig. 4).

Nitric oxide (endothelium-derived relaxing factor) is a potent dilator of the fetal pulmonary circulation. There is strong evidence that nitric oxide is an important mediator of the decrease of PVR at birth. The fetal pulmonary circulation dilated by an increase in oxygen tension is mediated by the endogenous synthesis of nitric oxide. Acetycholine, bradykinin, and histamine stimulate the production of nitric oxide by vascular endothelium. Nitric oxide, in turn, activates soluble guanylate cyclase to produce cGMP. cGMP induces relaxation of vascular smooth muscle through the activation of cGMP-dependent protein kinase that lowers intracellular calcium (in part through the activation of potassium channels). Inhaled nitric oxide has the same effects as that produced by the body and is used in the management of high PVR.

Leukotrienes may partially mediate hypoxic pulmonary vasoconstriction in adults and newborns. In fetal lambs, leukotriene receptor antagonism and inhibition of leukotriene synthesis increase pulmonary blood flow to levels associated with ventilation after birth.

Vascular remodeling during the first 3 days of life is also an important factor in the change of PVR. The decrease of PVR is accompanied by structural remodeling of the pulmonary vascular bed (from the main arteries to the capillaries) and changes in smooth muscle shape and geometric orientation cause the lumens to enlarge. There is maturation of smooth muscle function, thinning of endothelial cells, and changes in elastic and connective tissue over the first several weeks of life.

Principles of managing pulmonary hypertension

In the neonate, infant, and child, etiologies of elevated
pulmonary vascular resistance include parenchymal lung disease, release of vasoconstriction, an abnormal vascular bed (i.e. acute asphyxia, chronic hypoxemia, constriction of the ductus arteriosus, and hypoplasia of the lungs), and blockade of the nitric oxide pathway. The principles of managing the resultant pulmonary hypertension are the same regardless of the etiology.[23-26] First, it is necessary to minimize lability by using sedation and minimal stimulation. Paralysis may be needed. Patient-triggered ventilators are better in these patients. Second, it is imperative to support the systemic circulation and maintain the systolic blood pressure at the upper limits of normality (decreases right-to-left shunting at the ductal or foramen level). Volume and/or inotropes may be needed. Third, correction of alveolar hypoxia/hypercarbia is required. Fourth, recruitment of lung units is necessary using surfactant, liquid perfluorocarbon, and/or high frequency oscillation. Fifth, vasodilation of the pulmonary vasculature is required using nonselective vasodilators (tolazoline, nitroprusside, prosta-cyclin, fentanyl, isoproterenol, chlorpromazine) and/or selective vasodilators (respiratory alkalosis, nitric oxide, blockade of cGMP), if needed. Extracorporeal membrane oxygenation (ECMO) may be used as a last resort.[27]

Role of prostacyclin and milrinone in treatment of pulmonary hypertension

Prostacyclin induces a dose related decrease of pulmonary artery pressure, pulmonary artery resistance, and right atrial pressure. Cardiac output and systemic oxygen delivery are increased. Both endogenous and inhaled prostacyclin induce relaxation of vascular smooth muscle and decreased platelet adhesion, aggregation, and activation (Fig. 5). T1/2 is 2 to 3 minutes and metabolites may be measured in urine and plasma. It has been used in the acute and chronic therapy of primary pulmonary hypertension in adults; however, some of the first reports of its use were in infants and children. Lack of selectivity of infused prostacyclin leads to generalized vasodilation and perfusion of ventilated and non-ventilated lung. Systemic vasodilatation is problematic in pulmonary hypertension. Advantages of inhaled prostacyclin include no systemic side effects like hypotension, and its short half-life makes it easy to titrate its effects on PVR. Lack of toxicity of prostacyclin or its metabolites make accurate measurement of the drug in inspiratory and expiratory gases not critical (unlike nitric oxide), and the delivery system for inhaled prostacyclin is inexpensive and readily available at any medical center. Inhaled prostacyclin has been rarely reported in infants and children.[29-32] Doses of inhaled prostacyclin delivered to adults and children in clinical trials vary from 10 to 100 ng · kg⁻¹ · min⁻¹. In studies by Haraldsson et al.[33,34] inhaled prostacyclin resulted in a reduction of PVR greater than 20% with a decrease of SVR less than 5%. This was additive with inhaled milrinone.[35-37]

![Fig. 5. Roles of ATP and adenosine in vasodilation of pulmonary blood vessels. PL₁²: phospholipase A₁; COX: cyclooxygenase; PGI₁-S: prostacyclin synthase; AC: adenylyl cyclase; PGI₂: prostacyclin; PDE₅: phosphodiesterase III; PDE₄: inhibitor of PDE₄.](image)

Intracellular levels of second messenger molecules like cAMP and cGMP are controlled by a group of cyclic nucleotide hydrolyzing enzymes called phosphodiesterases.[38-42] Amrinone and its analog milrinone are inhibitors of the low-Km cGMP-inhibited cAMP phosphodiesterase (Type III PDE). Their positive inotropic and chronotropic effects are ascribed to an increase in cAMP levels.[44] Unlike catecholamines, milrinone produces positive inotropic effects with concurrent vasodilation and no chronotropic effect. It has been a valuable drug in the management of congestive heart failure, shock, and post-operative management following cardiac surgery.

At the University of Buffalo, intracheal prostacyclin and intravenous milrinone are being evaluated in the management of primary pulmonary hypertension of the newborn (PPHN).[45-49] Increasing doses of intracheal prostacyclin decreases PVR in a ductal ligation model of pulmonary hypertension in a dose dependent manner. Pulmonary arterial pressures also decrease with increasing doses of intracheal prostacyclin with no significant drop in mean systemic blood pressures. Pulmonary blood flow increases—more apparent at higher doses. The same changes are seen in the L-NAME model of PPHN.
Intravenous milrinone by itself decreases PVR by greater than 20%. The addition of intratracheal prosta-
cyclin further decreases PVR. Intravenous milrinone
produces a marked decrease in PVR at lower doses of
intratracheal prostacyclin compared to intratracheal
prostacyclin alone. This synergistic effect is being fur-
ther evaluated in the ductal ligation lamb model of
PPHN.

Summary
PVR is highest during early gestation and decreases
during pregnancy. At birth, PVR normally decreases
and is dependent on regulators of pulmonary vascular
resistance. The latter include physical factors, vasoac-
tive factors, and vascular remodeling. Elevated pul-
monary vascular resistance may be a result of parenchymal
lung disease, release of vasoconstriction, an abnormal
vascular bed, and blockade of the nitric oxide path-
way. Current principles of managing pulmonary hyper-
tension include minimizing lability, supporting the cir-
culation, correction of alveolar hypoxia and/or hyper-
carbia, recruitment of lung units, vasodilating, and the
use of extracorporeal membrane oxygenation when in-
dicated. New management strategies that are being
evaluated in the laboratory are inhaled prostacyclin with
or without intravenous milrinone.

Funding: None.
Ethical approval: Not needed.
Competing interest: None declared.
Contributors: Neonatology Department of the Women and
Children’s Hospital of Buffalo, USA. VLM wrote the entire article.

References
1 Fuhrmann BP, Zimmerman JJ. Pediatric critical care, Second
Eds. St Louis; Mosby; p512-528.
2 Reed GB, Claireaux AE, Cockburn F. Diseases of the fetus
and newborn-pathology, imaging, genetics and management.
3 Mann D, Mehta V. Cardiovascular embolmy. Int Anesthesi-
4 Morin FC 3rd, Egan EA, Ferguson W, Lundgren CE. Devel-
opment of pulmonary vascular response to oxygen. Am J Phys-
iol 1988;254(3 Pt 2);H542-546.
5 Morin FC 3rd, Egan EA. Pulmonary hemodynamics in fetal
lamb during development at normal and increased oxygen ten-
6 Lauer RM, Evans JA, Aoki H, Kittle CF. Factors controlling
pulmonary vascular resistance in fetal lambs. J Pediatr 1965;
67;568-577.
7 Belik J. Large pulmonary arteries and the control of pulmonary
vascular resistance in the newborn. Canadian J Physiol Pharma-
8 Belik J, Halayko AJ, Rao K, Stephens NL. Pulmonary and
systemic vascular smooth muscle mechanical characteristics in
9 Dukarm RC, Steinhorn RH, Morin FC 3rd. The normal pul-
nmonary vascular transition at birth. Clin Perinatal 1996;23:
71-726.
10 Lowson SM, Doctor A, Walsh BK, Doorley PA. Inhaled
prostacyclin for the treatment of pulmonary hypertension after
11 Max M, Rossaint R. Inhaled prostacyclin in the treatment of
pulmonary hypertension. Eur J Pediatr 1999;158 (Suppl 1);
12 Muzaffar S, Shukla N, Angelini GD, Jeremy YJ. Inhaled
prostacyclin is safe, effective, and affordable in patients with
pulmonary hypertension, right-heart dysfunction, and refracto-
ry hypoxemia after cardiothoracic surgery. J Thorac Cardiovasc
13 Tikinsky MH, Morin FC 3rd. Increasing oxygen tension di-
lates fetal pulmonary circulation via endothelium-derived relax-
ing factor. Am J Physiol 1993;265(1 Pt 2);H716-380.
14 Shaul PW, Yuhanna I, German Z, Chen Z, Steinhorn RH,
Morin FC 3rd. Pulmonary endothelial NO synthase gene ex-
pression is decreased in fetal lambs with pulmonary hyperten-
sion. Am J Physiol 1997;272(5 Pt 1);L1005-1012.
15 Braun-Moscovici Y, Nahir AM, Balbir-Gurman A. Endothel-
in and pulmonary arterial hypertension. Semin Arthritis Rheum
2004;34;442-453.
16 Tikinsky MH, Cummings JJ, Morin FC 3rd. Acetylcholine
increases pulmonary blood flow in intact fetuses via endothe-
lum-dependent vasodilation. Am J Physiol 1992;262 (2 Pt 2);
H406-410.
17 Steinhorn RH, Russell JA, Morin FC 3rd. Disruption of
cGMP production in pulmonary arteries isolated from fetal
lambs with pulmonary hypertension. Am J Physiol 1995;268(4
Pt 2);H1483-1489.
18 Roberts JD Jr, Fineman JR, Morin FC 3rd, Shaul PW, Rimar
S, Schreiber MD, et al. Inhaled nitric oxide and persistent pul-
nmonary hypertension of the newborn. The Inhaled Nitric Oxide
19 Steinhorn RH, Millard SL, Morin FC 3rd. Persistent pulmona-
ary hypertension of the newborn. Role of nitric oxide and endo-
22;465-428.
20 Zayek M, Wild L, Roberts JD, Morin FC 3rd. Effect of nitric
oxide on the survival rate and incidence of lung injury in new-
born lambs with persistent pulmonary hypertension. J Pediatr
1998;123;947-952.
21 Zayek M, Cleveland D, Morin FC 3rd. Treatment of persis-
tent pulmonary hypertension in the newborn lamb by inhaled
nitric oxide. J Pediatr 1993;122(5 Pt 1);743-750.
22 Deb B, Bradford K, Pearl RG. Additive effects of inhaled ni-
tric oxide and intravenous milrinone in experimental pulmona-
23 Morin FC 3rd, Stenmark KR. Persistent pulmonary hyperten-
sion of the newborn. Am J Respir Crit Care Med 1995;151;
2010-2032.
24 Dembinski R, Henzler D, Rossaint R. Modulating the pulmo-
nary circulation; an update. Minerva Anestesiologica 2004;70:
239-243.
25 Konduari GG. New approaches for persistent pulmonary hy-
26 Abman SH. Neonatal pulmonary hypertension; a physiologic
approach to treatment. Pediatr Pulmonol Suppl 2004;26;127-

World J Pediatr, Vol 1 No 1 • July 15, 2005 •

Review article

48. Steinhorn RH, Morin FC 3rd, Fineman JR. Models of persistent pulmonary hypertension of the newborn (PPHN) and the role of cyclic guanosine monophosphate (cGMP) in pulmonary vasoconstriction. Semin Perinatol 1997;21:393-408.

Received April 28, 2005
Accepted after revision May 3, 2005