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Exhaustive mathematical analysis of simple clinical 
measurements for childhood pneumonia diagnosis
Keegan Kosasih, Udantha Abeyratne
Brisbane, Australia

Background: Pneumonia is the leading cause of 
mortality for children below 5 years of age. The majority 
of these occur in poor countries with limited access to 
diagnosis. The World Health Organization (WHO) 
criterion for pneumonia is the de facto method for 
diagnosis. It is designed targeting a high sensitivity and 
uses easy to measure parameters. The WHO criterion has 
poor specifi city.

Methods: We propose a method using common 
measurements (including the WHO parameters) to diagnose 
pneumonia at high sensitivity and specificity. Seventeen 
clinical features obtained from 134 subjects were used to 
create a series of logistic regression models. We started with 
one feature at a time, and continued building models with 
increasing number of features until we exhausted all possible 
combinations. We used a k-fold cross validation method to 
measure the performance of the models.

Results: The sensitivity of our method was comparable 
to that of the WHO criterion but the specificity was 84%-
655% higher. In the 2-11 month age group, the WHO 
criteria had a sensitivity and specificity of 92.0%±11.6% 
and 38.1%±18.5%, respectively. Our best model (using 
the existence of a runny nose, the number of days with 
runny nose, breathing rate and temperature) performed 
at a sensitivity of 91.3%±13.0% and specificity of 
70.2%±22.80%. In the 12-60 month age group, the WHO 
algorithm gave a sensitivity of 95.7%±7.6% at a specificity 
of 9.8%±13.1%, while our corresponding sensitivity 
and specificity were 94.0%±12.1% and 74.0%±23.3%, 
respectively (using fever, number of days with cough, heart 
rate and chest in-drawing).

Conclusions: The WHO algorithm can be improved 
through mathematical analysis of clinical observations 
and measurements routinely made in the field. The 
method is simple and easy to implement on a mobile 
phone. Our method allows the freedom to pick the best 
model in any arbitrary field scenario (e.g., when an 
oximeter is not available).
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Introduction

Pneumonia is one of the leading causes of 
mortality in children under five worldwide. It is 
estimated that 905 059 children below the age 

of five died from pneumonia globally in 2013.[1] It 
accounted for 14% of a total of 6.3 million child deaths 
around the world that year.[1,2] The United Nations 
is aware of the issue and, through the Millenium 
Development Goal (MDG) 4 program, worked with 
countries globally to reduce the under-five mortality 
rate by two thirds between 1990 and 2015.[3-5]

Between 1990 and 2013, child pneumonia mortality 
fell 58% worldwide from 2.2 million to <1 million, and 
overall global child mortality fell from 12.7 million to 6.3 
million, but these reductions were unevenly distributed 
and outside the worst affected regions.[1,3] An increasing 
proportion of pneumonia deaths, up to 80% of under-
fi ve children, comes from sub-Saharan Africa and South 
Asia.[5] In 2010, there were 120 million episodes of 
pneumonia globally, where 14 million cases progressed to 
severe episodes and 1.3 million cases led to death.[6] Child 
pneumonia deaths have decreased at a slower pace than 
other leading causes of child mortality such as measles 
and diarrhea.[1] This affects the progress of MDG 4 
which, based on current trends, will remain as high as 
4.4 million cases of under-fi ve mortality in 2030.[2]

Childhood pneumonia also remains a significant 
burden in the developed world. Up to 2.6 million cases 
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were estimated across North America, Europe, Australia, 
New Zealand and Japan each year, of which 1.5 million 
cases required hospitalization and approximately 3000 
children under fi ve years of age succumbed to the disease.[7]

One of the key developments still missing in the 
global fi ght against pneumonia is the absence of a rapid, 
low cost diagnostic method/system.[1,8-14] Diagnosing 
each case accurately and precisely is diffi cult even with 
state of the art equipment, and even more so in poor 
resource settings. Development assistance targeting 
pneumonia is relatively scarce and accounted for only 
2% of overall global health financing.[1] In 1990, the 
World Health Organization (WHO) and United Nations 
International Children's Emergency Fund proposed the 
WHO criteria for childhood pneumonia classification 
in resource-poor regions. This is the current de facto 
diagnostic method used by community health workers in 
resource limited settings as a rapid low cost alternative in 
frontline health facilities. Supplementary Table 1 shows 
the WHO/IMCI (Integrated Management of Childhood 
Illness) guideline for pneumonia classifi cation in resource 
poor regions. The WHO/IMCI guideline dictates that if a 
patient exhibits symptoms of cough/breathing diffi culty, 
the patient is screened for the next step. Breathing 
rate is taken and if it exceeds the limit [50 breaths per 
minute (bpm) for age 2-11 months, 40 bpm for age 12-
60 months], non-severe pneumonia is declared. Danger 
signs such as lower chest indrawing and inability to feed 
or drink would put the patient in the severe pneumonia 
category requiring immediate attention.

Researchers have generally recognized the limitations 
of the WHO criteria, which are sensitive but not very 
specific.[9,15,16] Over the years, others have suggested 
the addition of fever,[17] grunting and nasal flaring,[8] 
temperature and oxygen saturation.[18] Rambaud-Althaus 
et al[8] proposed a combination of signs in a decision tree 
format to improve clinical diagnosis accuracy.Pneumonia 
Etiology Research for Child Health investigators 
developed their own standard interpretations of the 
symptoms and signs based on the WHO criteria for a 
clinical case defi nition of pneumonia.[16]

All these approaches make important contributions 
to dealing with the global burden of pneumonia, 
but largely suffer from the same type of limitations 
afflicting the WHO criteria for resource-poor regions. 
These methods also rely on health workers to perform 
measurements and interpret data using basic binary 
decisions around fi xed thresholds.

One method that has yet to be investigated by any 
group so far, is the use of logistic regression modelling to 
predict the risk of a child suffering from pneumonia based 
on a number of simple clinical observations. Logistic 
regression is one of the most popular models used in 

medical studies for diagnostic and prognostic purposes. 
No less than 28 500 studies using logistic regression 
were found in a 2002 review of publications indexed in 
Medline.[19] Logistic regression is an effi cient and powerful 
way for predicting binary outcomes based on measuring 
unique contribution of multiple independent variables.[20] 
Several studies in the past have used logistic regression 
to predict risk factors in adult pneumonia patients with 
positive results.[21,22] One study included children under 
five in their logistic regression modelling of pneumonia 
patients, but the aim was directed at analyzing risk factors 
for mortality instead of initial diagnosis.[23]

One method that has yet to be investigated is the use 
of mathematical modelling such as logistics regression to 
diagnose pneumonia based on simple clinical observations. 
In our previous work, we have demonstrated the 
benefits of this approach in automatic identification of 
wet and dry coughs in children,[24] as well as diagnosing 
childhood pneumonia based on cough sounds.[25]

Our aim is to develop and evaluate models that can 
increase the specificity of the WHO algorithm while 
retaining its high sensitivity. In Section II, we describe 
our patient database as well as the detailed methodology 
used in our analysis. Section III presents the results 
of our analysis in conjunction with a discussion of the 
model performances compared with the WHO criteria. 
Concluding remarks, future works as well as study 
limitations can be found in Section IV.

Methods
Study organization
The clinical data used for this study were collected 
by the Gadjah Mada University-Sardjito Hospital, 
Yogyakarta, Indonesia, in partnership with The 
University of Queensland, Brisbane, Australia. The 
data collection began in December 2010 and continued 
until March 2014. The ethics committees of the Sardjito 
Hospital and The University of Queensland approved 
the study protocol. The inclusion/exclusion criteria are 
given in Supplementary Table 2. Patients are included 
if they exhibit any 2 symptoms of cough, sputum, 
increased breathlessness and temperature >37.5°C. 
Parental consent was sought prior to inclusion if the 
patient met the criteria and excluded if consent was 
not granted. Exclusion criteria also applied to patients 
showing symptoms of advanced disease, terminal lung 
cancer and/or requiring a nasal drip IV, as these may 
skew the outcomes. As a precaution, patients showing 
droplet-spread disease were also excluded.

Diagnostic definitions
The reference diagnosis used in this study is the overall 
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diagnosis provided by the pediatricians on the basis of 
clinical presentation, laboratory tests, chest X-ray, and the 
clinical course of the disease. An X-ray was performed 
only on subjects clinically suspected of pneumonia and, on 
other occasions, where there is clear need for it. Therefore, 
not all our subjects underwent a chest X-ray.

Study protocol
All children who satisfied the inclusion criteria were 
invited to participate in the study. Each child's history 
and clinical measurements were recorded as part of the 
hospital admission process. Diagnostic outcomes and 
all test results collected from the subjects in the course 
of normal diagnosis/management of the disease were 
made available to this study. Supplementary Table 3 
lists some of the information recorded which was used 
for analysis in this paper. The test parameters included 
the existence of fever, cough, breathing difficulty, 
runny nose, and chest indrawing as a binary yes/no 
observation. It also included the following data as 
numbers: age, weight, height, breathing rate, temperature, 
body mass index, oxygen saturation, and number of days 
suffering fever, cough, breathing difficulty, runny nose. 
Other diagnostic measures such as blood/sputum analysis 
and chest X-ray were performed only if the attending 
physician deemed it to be necessary.

Study population
We recruited 222 children in total: 93 females, 129 
males with a median age of 9 months and an inter-
quartile range of 4.25-20 months. Our population 
came from subjects admitted to the hospital ward. 
Our intention was to focus on the clinical parameters 
of interest in diagnosing pneumonia in resource poor 
regions. The dataset comprised 134 children with 
the complete list of parameters specified earlier. We 
excluded 88 patients from further consideration due to 

Fig. 1. Flow diagram for the machine learning process of training a 
logistic regression model (LRM) and testing the performance of each 
selected features in diagnosing pneumonia. ROC: receiver operating 
characteristic; STD: standard deviation.
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the absence of one or more of the required parameters. 
The distribution of the chosen 134 children closely 
represented the initial 222 children recruited, as shown 
in Supplementary Table 4. There were 71 and 63 
children in the 2-11 months and 12-60 months  age groups, 
respectively. Of the 134 children, 96 were diagnosed 
with pneumonia, whereas the remaining 38 were a 
mix of asthma, bronchitis, bronchiolitis, heart disease, 
malnutrition, wheezing, etc. The non-pneumonia group 
served as the control set for this study.

Analysis of data
The flow diagram presented in Fig. 1 details the process 
used in analyzing our data. The data set is split into two 
age groups, 2-11 months and 12-60 months. Clinical 
features from each group are tabled into a feature 
matrix for processing.

Using a k-fold cross validation method, each age 
group was randomly split into k number of folds. An 
iterative process was then adopted in which one fold of 
data was retained as the testing set whilst the rest of the 
data was used for training a logistic regression model 
(LRM). A good general explanation of the logistic 
regression method used in medical applications can be 
found in a paper by Sainani.[26]

The LRM outputs the probability of the existence 
of pneumonia based on the specified predictors, to 
which a cut-off threshold is applied to make the 
output a binary decision. This threshold was carefully 
selected following a receiver operating characteristic 
(ROC) analysis to separate the positive and negative 
pneumonia cases as cleanly as possible.

In the LRM design, we commenced by using one 
feature at a time and computing the performance of 
the resulting models. We then exhaustively searched 
all combinations of two features taken at a time. This 
process was continued until we reached all 17 features 
taken at a time. In each iteration, the trained models 
were evaluated according to their sensitivity (Sn), 
specificity (SP), accuracy (Acc), and the area under the 
curve (AUC). AUC was only available for the training 
data to set the diagnostics threshold.

Note that in each fold of the k-fold cross validation, 
the data set was divided into non-overlapping training 
and testing sets, and the performance was estimated 
separately for both the training and testing sets. Each 
iteration generated k number of ROC curves and k 
sets of training and testing performance measures. 
Each iteration also generated k number of trained 
LRM models. The trained LRM models were used to 
calculate the performance of the training set. The LRM 
models were then fixed, and used on the testing data 
set to compute the testing performance and validate the 
trained model. Each set of LRM models was considered 
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final for its respective fold. Hence, for testing 
performance, no AUC data were available.

The best performing models were chosen based on the 
means and standard deviations (SDs) of the training and 
testing performances. These numbers were calculated and 
are reported in the Results section. Similarly, the WHO 
criteria performance numbers were calculated for the 
testing sets and represented using their means and SDs. 
We then used the performance values to determine which 
parameters, in which combinations could provide the best 
diagnostic outcomes with the testing sets.

This  process was i terated for  each feature 
combination used. First we analyzed the LRM 
performance of using one, two, and three features at a 
time. Next, we exhaustively analyzed all possible feature 
combinations with up to 17 features being used at once. 
Supplementary Table 5 shows the possible combinations 
for each number of features used in the creation of 
the LRM model. Using one feature at a time gives 17 
possible combinations, whereas using all 17 features at 
a time would have only one possible combination. The 
number of possible combinations rises significantly in 
between. For example, the use of 8 features at a time 
results in 24 310 combinations. In total, the number 
of models tested in this study is comprised of 131 071 
combinations. Given the large number of models tested, 
the ROC curve analysis to fi nd the best cut-off threshold 
for each model becomes very important. We selected the 
threshold targeting a Sn ≥90% with Sp as high as possible. 
This also had the benefi t of lowering the false discovery 
rate. As we mentioned earlier, our aim is to improve the 
Sp of the WHO algorithm, while maintaining high Sn.

Results
In this section, we show the results of our analysis, 
starting from the cross-validation process and the WHO/
IMCI algorithm performance in our patient groups. 
We then describe the performance of our models and 
compare with the WHO outcomes in the 2-11 month 
age group, followed by the 12-60 month age group.

The cross-validation technique
As detailed in Methods section, we used k-fold cross-
validation to train and evaluate our classifier models. 
In this study we set k=8, resulting in 8-9 children in 
each fold. Higher k values, such as the more commonly 
used k=10, would result in 6-7 children in each fold. 
We deemed this number as insufficient and decided 
k=8 gives better balance for the testing data. Note that 
in each fold of the cross validation, training and testing 
sets are mutually exclusive, that is training and test 
testing sets do not overlap.

WHO/IMCI performance
We applied the WHO criteria (Supplementary Table 1) to 
data in each fold of the k-fold cross validation data set, and 
computed the mean and the SD across all folds. Results are 
shown in Table 1. As expected, WHO criteria yielded high 
Sn with relatively small SD across both age groups, but at a 
poor specificity Sp.

Our target is to maintain the high sensitivity of the 
WHO algorithm while increasing the specificity. Next 
we describe the performance of the proposed method. 
As the analysis was done separately for each age group, 
we will begin by presenting the results for the 2-11 
month age group.

Performance in the 2-11 month age group
Supplementary Fig. 1 shows mean Sn and Sp values for 
models using one, two, and three features at a time for 
the 2-11 month age group. Our feature set consisted of 17 
observations/measurements as listed in Supplementary 
Table 3. The number of total combinations of one-feature 
taken at a time is 17, leading to 17 LRM models with one 
feature as the input (Supplementary Fig. 1, top frame). 
Similarly, two features at a time and three features at 
a time give us 136 and 680 LRM models respectively 
(Supplementary Fig. 1, middle and bottom frames). 
Overall, significant benefits were found in combining 
features up to four at a time in one LRM.

Fig. 1 shows the ROC curve analysis for 12 trained 
LRM models we selected for further consideration. 
Two models each are from single and double feature 
combinations, fi ve from triple feature combinations, and 
three with four feature combinations. The solid line in 
each frame represents the mean ROC curve, formed over 
the k folds. Crosses on each frame represent the SD of 
the Sn and 1-Sp at points shown. On each frame of Fig. 2, 
we also graphically illustrate (see boxes) the performance 
possible with the WHO/IMCI algorithm for resource-
limited regions. The center of the box indicates the 
mean performance, and the height and width of the box 
represent SD. Table 2 shows the training and testing 
performance numbers for the 12 models.

When a single feature is used to create the LRM for 
the 2-11 month age group, the best features in terms of 
testing performance were breathing rate (Sn of 91% and 
Sp of 35%) and chest in-drawing (Sn of 98% and Sp of 
33%). These numbers closely matched the performance 

Age group
Classifi cation performance (%), mean±standard deviation
Sensitivity Specifi city Accuracy PPV NPV

2-11 mon 92.0±11.6 38.1±18.5 69.1±11.2 67.6±12.5 76.2±28.0
12-60 mon 95.7±7.6         9.8±13.1 66.5±12.8   66.5±15.2 60.0±49.0

Table 1. WHO criteria as applied to k-fold testing sets 

PPV: positive predictive value; NPV: negative predictive value.
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Fig. 2. ROC curve analysis for the age group of 2-11 month. The solid line in each frame represents the mean ROC curve, formed over k-iterations. 
Crosses on each frame represent the SD of the Sn and 1-Sp at points shown. On each frame, the performance of WHO/IMCI algorithm for 
resource-limited regions is graphically illustrated (see boxes). The center of the box indicates the mean performance, and the height and width 
of the box represent SD. ROC: receiver operating characteristic; SD: standard deviation; Sn: sensitivity; Sp: specificity; WHO: World Health 
Organization; IMCI: integrated management of childhood illness.
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of the WHO criteria, as it also relies on the same features 
for childhood pneumonia classifi cation.

Individually, the breathing rate and temperature 
exhibit the highest AUC in the training performance. 
However, the temperature model shows higher Sn and 
lower Sp compared with the WHO criteria, as opposed 
to breathing rate model which has comparable numbers. 

On the testing dataset, both models demonstrate high 
Sn with little SD, but the SDs of the Sp vary wildly, 
rendering both models unusable by themselves. This 
suggests that the WHO criteria are still more reliable 
when compared to single feature LRM models.

The use of two features at a time boosts the Sp to 
50% for certain feature combinations while maintaining 
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Sn around 90%. This is a significant improvement 
from the Sp of the best single feature model. The best 
performers are models using breathing rate with oxygen 
saturation, and, breathing rate with fever. Both feature 
combinations exhibit high AUC (75%-82%) in training.

We continued to add features further until the 
optimal LRM feature combinations were found. On the 
three simultaneous feature models, the overall testing 
performances are higher than the double feature ones. 
Mean Sn levels remain largely the same around 90% 
and mean Sp levels are on average 30% higher than the 
double feature models. The SD level for Sn is unchanged 
but for Sp is 44% smaller. The best performing model 
for this category includes fever, oxygen saturation and 
chest in-drawing as parameters, achieving an Sn value 
of 88.1%±13.6% and an Sp value of 61.9%±8.7%. 
Compared with the WHO/IMCI algorithm (Sn and Sp of 
92.0%±11.6% and 38.1%±18.5%, respectively), the mean 

Sn is 4% lower while Sp is 62% higher. The SDs are 17% 
larger for Sn and 53% smaller for Sp compared with WHO. 
Thus, the best triple feature model performs much better 
than WHO criteria in terms of Sp, with a small loss of Sn.

Further improvements in classifi cation performance 
are found using four features at a time. The best 
performing model uses the existence of runny nose, 
number of days with runny nose, breathing rate and 
temperature (91.3%±13.0% Sn and 70.2%±22.80% Sp). 
The mean Sn is on a par with the WHO results, and the 
mean Sp is 84% higher. The SD for both Sn and Sp are, 
however, slightly higher compared with the WHO/IMCI 
algorithm. The second best performing model uses 
runny nose, days with runny nose, breathing rate, and 
heart rate at Sn of 91.5%±9.2% and Sp of 66.0%±26.3%. 
The mean Sn is also on a par with the WHO results 
while Sp is 73% higher. For SDs, they are 20% smaller 
for Sn and 42% larger for Sp compared with WHO.

Features Training performance (%) Testing performance (%)
S n S p A cc AUC CO S n S p A cc

Temperature
  Mean 93.2 11.9 59.9 71.7 38.4 88.8 11.3 58.7
  SD   1.4   9.8   3.9   2.5   3.7 13.0 12.2 12.2
Breathing rate (BR)
  Mean 93.5 35.4 69.8 74.9 35.6 91.3 35.2 65.7
  SD   1.5 12.0   4.3   2.2   2.5 13.0 29.8 17.1
Chest indrawing
  Mean 97.6 34.4 71.8 66.0 67.9 97.9 32.9 71.6
  SD   1.0   3.4   1.6   1.8   1.8   5.9 23.7 10.7
Fever+breathing rate
  Mean 93.2 44.5 73.2 82.1 33.5 86.0 50.2 69.1
  SD   1.5 11.2   4.7   2.6   3.7 17.9 26.6 18.2
Oxygen saturation+breathing rate
  Mean 91.8 37.9 69.8 75.0 37.2 91.2 35.2 65.7
  SD   0.3 11.6   5.0   2.3   3.4 13.0 29.8 17.0
Age (mon)+fever+breathing rate
  Mean 91.8 63.7 80.3 83.3 39.9 86.0 66.7 76.6
  SD   0.3   7.9   3.4   2.4   5.1 17.9 22.5 16.8
Age (mon)+fever+days with cough
  Mean 91.8 63.7 80.3 81.2 41.3 83.5 67.3 76.1
  SD   0.3   4.5   2.4   1.9 10.6 14.5 23.9 18.5
Fever+temperature+chest indrawing
  Mean 91.8 62.1 79.7 82.6 46.0 90.6 57.7 77.8
  SD   0.3   1.2   0.8   1.8   5.6 13.7 13.0 10.6
Fever+oxygen saturation+chest indrawing
  Mean 92.8 64.0 81.1 77.9 44.1 88.1 61.9 77.6
  SD   1.5   3.0   1.6   1.9   8.7 13.6   8.7 10.9
Fever+breathing rate+chest indrawing
  Mean 91.8 59.2 78.5 83.6 41.4 86.0 56.3 73.6
  SD   0.3   4.7   2.2   2.1   4.3 17.9 10.1 14.1
Fever+days with cough+heart rate+chest indrawing
  Mean 92.2 65.9 81.5 84.7 59.6 86.0 63.5 76.3
  SD   1.0   6.5   2.6   2.6   7.9 15.5 18.6 13.3
Runny nose+days with runny nose+BR+temperature
  Mean 91.8 77.4 85.9 88.1 51.0 91.3 70.2 82.0
  SD   0.3   6.1   2.5   2.1   6.1 13.0 22.8   9.3
Runny nose+days with runny nose+BR+heart rate
  Mean 91.8 64.0 80.5 83.5 41.5 91.5 66.0 80.1
   SD   0.3   4.6   2.0   2.2   2.6   9.2 26.3 12.1

Table 2. Performance comparison between various models for diagnosing pneumonia in children aged 2-11 months 

AUC: area under the curve; CO: cut-off threshold; SD: standard deviation; Sn: sensitivity; Sp: specifi city; Acc: accuracy.
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Performance in the 12-60 month age group
For the 12-60 month age group, the same process is 
repeated, starting with observation of the ROC curves 
from 12 trained LRM models chosen for comparison, as 
shown in Fig. 3. Table 3 shows the training and testing 
results for LRM models in the 12-60 month age group. 
The two best performing models for both age groups 

are compared in Supplementary Fig. 2.
For the single feature category, breathing rate and chest 

in-drawing (individually) still exhibit the best performance 
in general. The WHO/IMCI algorithm implementation 
for this age group demonstrates Sn of 95.7%±7.6% and Sp 
of 9.8%±13.1%. The best double feature LRM models in 
this age group also include breathing rate as a parameter. 
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Fig. 3. ROC curve analysis for the age group of 12-60 month. The solid line in each frame represents the mean ROC curve, formed over 
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The best two models are breathing rate with fever and 
breathing rate with oxygen saturation.

For triple features, the best testing performance 
was observed when using fever, temperature, and 
chest in-drawing. This combination reached a Sn of 
92.1%±15.8% and Sp of 51.3%±39.0% for testing 
performance. The mean Sn is still comparable to the 
WHO criteria with 3% disparity, but the mean Sp of 
the LRM model is 423% higher. The SD of the Sn is 
107% larger compared with WHO, and for Sp it is 197% 
greater. The best Sp in this category is found in the 
combination of fever, breathing rate and temperature 
with Sp of 74.8%±30.2%. This is a 663% increase of 
mean Sp over WHO with 130% increase in SD. The 
mean Sn value is also 8% lower compared to WHO 
results while SD remains 100% higher.

In models with four features, the best performing 
model uses the existence of fever, number of days with 
cough, heart rate, and existence of chest in-drawing (Sn 
of 94.0%±12.1% and Sp of 74.0%±23.3%). The mean Sn 
is 2% lower than the WHO performance and the mean 

Sp is 655% higher. The second best performing model 
utilizes runny nose, days with runny nose, breathing 
rate, and temperature with Sn and Sp of 91.4%±12.1% 
and 71.9%±36.4%, respectively.

Recurrent features in best performing models
Following the recurrent appearance of certain features 
amongst the best performing LRMs in all feature 
combinations, we decided to systematically explore 
these features in order to rank the most significant 
features out of the 17 considered.

We set a threshold Sn of 90% and Sp of 70% on the 
mean testing performance for all possible combinations, 
from using one feature at a time to 17 features, and found 
20 models that meet the criteria (eight models from the 2-11 
month age group and 12 from the 12-60 age month group, 
respectively). Table 4 shows the number of recurrence 
for each feature within the top 20 feature combinations. 
Several measurements such as the breathing rate and 
observations such as the existence of runny nose are 
dominantly present as recurrent features in good models.

Features Training performance (%) Testing performance (%)
S n S p A cc AUC CO S n S p A cc

Temperature
  Mean 93.0 10.7 64.4 70.4 46.6 88.0 19.2 61.6
  SD   1.6 13.6   3.9   2.6   3.2 14.0 35.0 35.0
Breathing rate (BR)
  Mean 93.0 41.5 75.1 74.9 42.6 88.2 45.2 71.2
  SD   1.6   9.4   2.9   2.8   4.2 14.6 32.0 15.2
Chest indrawing
  Mean 97.6 32.0 74.6 64.8 72.3 97.5 32.3 74.3
  SD   1.0   4.9   3.0   2.5   3.0   7.1 35.8 20.6
Fever+breathing rate
  Mean 92.0 49.6 77.3 82.0 41.4 88.3 44.2 67.9
  SD   1.1 10.5   3.1   2.4   5.9 15.2 47.7 21.1
Oxygen saturation+breathing rate
  Mean 91.6 47.0 76.0 79.3 46.5 88.2 57.7 72.2
  SD   0.4   6.5   3.2   2.7   6.5 14.6 31.3 17.5
Age (mon)+fever+breathing rate
  Mean 91.6 58.4 80.0 81.5 46.9 88.3 70.6 75.9
  SD   0.4 10.3   3.6   2.5   7.2 15.2 33.5 14.9
Age (mon)+fever+days with cough
  Mean 91.6 60.4 80.7 79.3 53.5 84.3 59.6 74.6
  SD   0.4   4.3   2.0   2.2   9.4 21.2 37.6 13.4
Fever+temperature+chest indrawing
  Mean 92.0 57.7 80.0 80.6 51.8 92.1 51.3 79.2
  SD   0.9   3.8   1.4   2.6   9.7 15.8 39.0 16.5
Fever+breathing rate+chest indrawing
  Mean 91.6 56.4 79.4 82.3 49.0 88.3 58.1 74.3
  SD   0.4   9.6   3.3   2.4   9.1 15.2 39.2 17.0
Fever+breathing rate+temperature
  Mean 92.0 61.1 81.2 85.5 42.1 87.9 74.8 77.5
  SD   0.9   7.9   3.0   1.7   5.1 15.4 30.2 16.9
Fever+days with cough+heart rate+chest indrawing
  Mean 91.6 68.3 83.4 82.7 62.1 94.0 74.0 84.4
  SD   0.3   6.6   2.7   3.4   7.7 12.1 23.3   8.8
Runny nose+days with runny nose+BR+temperature
  Mean 91.6 74.0 85.5 87.5 52.3 91.4 71.9 87.5
  SD   0.3   4.9   1.7   2.8   9.8 12.1 36.4   9.2
Runny nose+days with runny nose+BR+heart rate
  Mean 91.6 61.8 81.2 84.0 47.6 85.9 59.4 74.6
  SD   0.3   3.2   1.6   2.8   3.3 21.2 37.6 17.7

Table 3. Performance comparison between trained models and WHO criteria for children aged 12-60 months 

AUC: area under the curve; CO: cut-off threshold; SD: standard deviation; Sn: sensitivity; Sp: specifi city; Acc: accuracy.



World Journal of Pediatrics

O
riginal article

454 World J Pediatr, Vol 13 No 5 . October 15, 2017 . www.wjpch.com

Discussion
One particular aim of this study was to explore if 
common clinical observations and measurements could 
be utilized to diagnose pneumonia at specificities 
higher than possible with the WHO algorithm, while 
maintaining the sensitivity of at least 90%. Our results 
have illustrated that this is indeed possible. Our best 
performing models demonstrated a sensitivity of 
91% while achieving an Sp in the range of 70%-72% 
depending on the age of the subjects. These numbers 
represented 84%-655% increase in Sp compared to the 
WHO/IMCI algorithm, which had Sp ranging between 
10%-38%. Our results are based on k-fold cross 
validation, and the reported outcomes are thus not on 
the same data used to train a particular model.

The number of clinical observations and measure-
ments needed to achieve a desired performance provides 
useful insight in designing clinical protocols targeting 
resource-poor areas. Results we obtained indicated that 
our single feature models perform similar to the WHO/
IMCI algorithm. Addition of second, third and fourth 
features significantly improve Sp while Sn continues to 
hold above 90%. Beyond four features, the calculation 
complexity rises without any performance gain.

One important contribution of this paper is the 
identification of most important clinical features and 
measurements that may substantially increase the 
accuracy of diagnosing pneumonia in resource-poor 
regions. We surveyed our exhaustive model database for 
the repeated appearance of features in models satisfying 
Sn>90% and Sp>70%.

The breathing rate appeared as a feature in 16 models 
across both age groups out of a total of 20. Oxygen 
saturation and chest indrawing too were important 
parameters appearing respectively in 8 and 12 models. 
The signifi cance of these measurements are well known 
among the medical and research communities. Our work 

No. Feature name 2 to 11 mon 12 to 60 mon
  1 Age in mon 0   0
  2 Fever 0   2
  3 Days with fever 0   0
  4 Cough 0   0
  5 Days with cough 0   2
  6 Runny nose 8   9
  7 Days with runny nose 8   8
  8 Breathing diffi culty 0   0
  9 Days with breathing diffi culty 0   0
10 Weight 0   1
11 Height 0   0
12 Breathing rate 8   8
13 Heart rate 0   1
14 Temperature 8 10
15 Body mass index 4   4
16 O2 saturation 4   4
17 Chest indrawing 4   6

Table 4. Number of feature occurrence in the models showing >90% 
sensitivity and >70% specifi city

uncovered two parameters of potential signifi cance; "the 
existence of runny nose" and the "number of days with 
runny nose", and both of which appeared in 16 out of 
20 models, just like the breathing rate. The "existence of 
fever" also presented as a frequent parameter (4 out of 20 
models) for the age group 12-60 months.

Breathing rate is the main measurement used in the 
WHO/IMCI algorithm to diagnose pneumonia. While it 
appears an easy parameter to measure, it has been found 
diffi cult to achieve in resource-poor regions. Therefore, 
a major fraction of the global pneumonia diagnosis 
resources are allotted to improving technologies and 
protocols to measure the breathing rate.[27-29] Without a 
reliable breathing rate measurement, the WHO/IMCI 
methods cannot be used in the fi eld.

Our results suggest that while breathing rate is 
an important parameter, it is not essential to diagnose 
pneumonia. For instance, our model using the four 
features age, existence of fever, existence of cough and 
days of cough was capable of Sn=83.5%±14.5% and 
Sp=67.3%±23.9% respectively, for the 2-11 month age 
group. In the other age group, this model exhibited Sn 
and Sp of 91.7%±17.8% and 51.0%±34.6%, respectively. 
Among two-feature models, the combination using 
fever and days with cough resulted in Sn and Sp of 
90.2%±14.0% and 44.3%±25.9%, respectively, for the 
2-11 month age group. For the older age group, the model 
performed with Sn=85.5%±15.2% and Sp=41.9%±47.7%. 
These results are parallel to our previous observation 
that breathing rate may not add additional value when 
mathematical features derived from cough sounds are 
available for diagnosing pneumonia.[30]

Recently there has been a renewed interest in the 
use of pulse oximetry in reducing childhood pneumonia 
mortality in resource-poor settings.[31-33] Hypoxemia is 
a diagnostic indicator for severe pneumonia and swift 
access to oxygen treatment could improve the prognosis, 
when available. In our exhaustive model building process, 
we found 8 of the 20 best models included oximetry 
as a feature. Oximetry can be a highly useful feature. 
However, our results suggest that we can substitute, in 
its place, simpler feature combinations when a pulse 
oximeter is not available in the fi eld.

The WHO/IMCI criteria for resource-poor regions have 
been designed to be highly sensitive to detect pneumonia. 
Sensitivities such as 94% for those aged <24 months, 62% 
for ≥24 months have been reported.[17] A high number of 
false positive results also occur, reducing the specificity 
of the method (16%-20%).[17] In our previous works 
on children, we have seen WHO/IMCI performing at a 
sensitivity of 83% and a specifi city of 47% (n=91).[25,30] The 
WHO/IMCI criteria works well when applied by doctors in 
conjunction with clinical and radiological analysis, giving 
performances of 77%-81% sensitivity and 77%-80% 
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specificity.[34] These numbers are comparable with what 
we obtained in this paper, though our method did not use 
laboratory or radiological measurements.

High false positive rate of the WHO criteria can lead to 
rising antimicrobial resistance in communities and render 
antibiotics ineffective. It also wastes rare drug stocks and 
delays early treatment opportunities for diseases with 
symptom overlap (e.g., malaria).[10,35] In low resource 
settings where only WHO/IMCI criteria are available, as 
many as 30% of cases had symptoms compatible with both 
malaria and pneumonia, necessitating dual treatment.[36] 
One of these treatments could be redundant. The method 
presented in this paper could potentially help with these 
issues by producing more accurate results, even in the 
absence of key parameters such as breathing rate.

The approach we took in this paper is unique. 
We systematically exhausted all possible feature 
combinations in our set of 17 features. Altogether we 
built and tested 131 071 models, each using different 
feature combinations. In the literature there are 
instances where WHO/IMCI algorithm was augmented 
with one or two other handpicked clinical features 
(e.g., fever, oximetry) targeting manual interpretation. 
For instance, Cardoso et al in their 2010 study[17] 
added fever to WHO/IMCI algorithm and illustrated 
the specificity increased up to 44% (age group <24 
month) and 50% (age group 24-60 months). However, 
the sensitivity was reduced below that of WHO/IMCI. 
In particular, in the age group 24-60 months, neither 
the original WHO/IMCI nor the modified method 
could achieve sensitivity above 62%. The method we 
proposed can achieve a sensitivity above 90% while 
maintaining the specificity at the range 70%-72%. No 
manual interpretation of features is necessary, and our 
method can be the basis of a decision device.

After this manuscript was submitted, in an 
independent development, Naydenova et al[37] published 
results on a method of combining several features using 
a machine learning approach. They reported oxygen 
saturation, temperature, breathing rate and heart rate 
as leading to the best performance in their model 
(sensitivity 96.6%, specificity 96.4%). In our work, 
the same feature combination resulted in an inferior 
performance (sensitivity 88.8%, specificity 40% in 
the age group 2-11 months; sensitivity 82.7% and 
specifi city 35.4% in the age group 12-60 months).

One critical difference between our method and 
the one by Naydenova et al[37] is that they used healthy 
people as control subjects while we used children with 
respiratory symptoms satisfying inclusion criteria as 
our control subjects. Our control subjects were children 
who visited the hospital seeking treatment for illnesses 
with symptoms shared with pneumonia, but the medical 
diagnosis was they had different diseases. The research 

problem we explored was completely different from 
the one examined by Naydenova et al[37] and the results 
are thus not comparable. Separating normal children 
from pneumonia subjects is a much simpler problem 
compared with identifying pneumonia subjects from a 
group of children with a range of respiratory illnesses.

Another critical difference was the reference 
standard used to diagnose pneumonia. The outcomes of 
Naydenova algorithms were compared against WHO/
IMCI algorithm as the reference standard, which has 
high sensitivity but poor specificity. Our reference 
standard used the diagnosis by pediatricians aided with 
clinical examinations, auscultation and laboratory and 
radiological results as deemed necessary for a clinical 
decision. The clinical course of the disease too was 
considered in the fi nal diagnosis. 

In conclusion, we investigated the problem of 
diagnosing pneumonia in a cohort of pediatric patients 
visiting a hospital presenting with respiratory complaints. 
We systemat ical ly and exhaust ively examined 
combinations of clinical features in their performance in 
diagnosing pneumonia. Altogether we built and tested 
131 071 LRM, each using different feature combinations. 
The LRM models we developed could retain the high 
sensitivity of the WHO/IMCI algorithm while increasing 
its mean specifi city by 84% for the 2-11 month age group 
and 655% for the 12-60 month age group.

This study was limited by the number of subjects 
(n=134) used and the reference method used to diagnose 
pneumonia. The reference standard used in this study 
is the overall clinical diagnosis aided by auscultation, 
laboratory analysis and radiography (when deemed 
clinically necessary by the attending physician) and the 
clinical course of the subject's response to treatment. Due 
to the need to limit radiation exposure to children, X-ray 
imaging was not performed on all subjects in the study.
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